

PROJECT

PRO-ENERGY - PROMOTING ENERGY EFFICIENCY IN PUBLIC BUILDINGS OF THE BALKAN MEDITERRANEAN TERRITORY

Work Package:	3. Joint Regional Analysis, Strategy and Framework
Activity:	3.4 Joint Regional Analysis, Strategy and Framework-Joint Criteria
	for the selection of the pilot public buildings
Activity Leader:	Cyprus Energy Agency - CEA
Deliverable:	3.1.4. Joint Criteria for the selection of the pilot public buildings

Version:	Draft 1.0	Date:	06/05/2021
Туре:	Report		
Availability:	Confidential		
Responsible Partner:	Region of Epirus - Regional	Unit of Thesprotia	a
Editor:	TREK Development S.A.		

DISCLAIMER:

This publication has been produced with the financial assistance of the European Union under the Interreg Balkan-Mediterranean 2014-2020. The contents of this document are the sole responsibility of the Region of Epirus - Regional Unit of Thesprotia, and can under no circumstances be regarded as reflecting the position of the European Union or of the Programme's management structures.

CONTENTS

IDEN	TIFICATION SHEET	5
INTRO	DDUCTION	6
1.	Definition of Joint Criteria for the selection of the pilot building	7
2.	Joint Criteria for selection of the public building	9
3.	References	13
4.	Annex	14

IDENTIFICATION SHEET

Project Ref. No.	BMP1/2.2/2052/2019
Project Acronym	PRO-ENERGY
Project Full Title	'Promoting Energy Efficiency in Public Buildings of the Balkan
	Mediterranean territory'

Security (distribution	Confidential
level)	
Date of delivery	06/05/21
Deliverable number	3.1.4
Туре	Report
Status & version	Draft 1.0
Number of pages	26
ACTIVITY contributing	3.4 Joint Criteria for the selection of the pilot public buildings
to the deliverable	
Responsible partner	Region of Epirus - Regional Unit of Thesprotia
Editor	TREK Development S.A.

INTRODUCTION

PRO-ENERGY is a transnational cooperation project, co-financed by the Cooperation Programme "Interreg V-B Balkan Mediterranean 2014-2020", under Priority Axis 2, Specific Objective 2.2 Sustainable Territories. The project aims at promoting Energy Efficiency in public buildings in the Balkan Mediterranean territory and to create a practical framework of modelling and implementing energy investments interventions, through specific ICT monitoring and control systems, as well as through energy performance contracting (EPC). The specific objective of PRO-ENERGY is to reduce by more than 20% the energy spending in public buildings of the participating entities in one year after the implementation of pilot actions.

Based on the above, Work Package 3 (WP 3) "Joint Regional Analysis, Strategy and Framework" aims at analyze existing situation in project areas regarding energy efficiency, identify good practices and perform benchmarking, define joint strategy and action plan for the promotion of energy efficiency and prepare for energy intervention in public buildings.

More specifically, Activity 3.4 "Joint Criteria for the selection of the pilot public buildings" aims to identify the public pilot building which will be targeted to identify and develop energy investment initiatives in order to reduce energy consumption and promote good practices. Each partner will investigate at least three public buildings take into consideration the following criteria in order to select the public pilot building.

1. Definition of Joint Criteria for the selection of the pilot building

The selection of the pilot public building needs to address the following criteria:

Location [Building Area] /Climate Zone

Consider if the main energy consumer is heating or cooling load (often depends on the season). For example, in Cyprus there are 4 climate zones. Climate zone 4 (mountainous) has significantly different climate conditions than the other 3 zones, experiencing much colder winters.

- **Type of building** [School, museums, innovation centres etc]
- Cultural Value of the building

Buildings with high cultural value or listed, present less opportunity for interventions and therefore will be difficult to reach energy efficiency level. Large interventions may alter their heritage character and hence are less attractive for big scale renovations.

Building Envelope /Construction

[Year of Construction, Year of renovation, Area of the building, New Buildings, already installed double-glazing, already installed thermal insulation on the roof, Anti- seismic upgrade, visible structural issues, visual building issues, previous implementation of other Energy Efficiency measures]

-Based on the Directive 2010/31/EC on EPBD and on https://ec.europa.eu/energy/intelligent/projects/sites/iee

projects/files/projects/documents/ilete_labelling_and_certification_guide_en.pdf

Knowledge of building codes in place at the time of the construction of the building will give an indication of the building's construction, which can be used for estimating insulation levels and give an overall indication of the quality of the envelope.

The building area is proportional to the cost for renovation, but also proportional to the energy consumption of the buildings. In general, the energy upgrading of larger buildings will have a greater impact.

Public buildings that have already planned energy and anti-seismic renovations are preferable to be avoided since there might not be enough time to implement the energy audits and decide the suitable measures.

Identification of the building: Data are collected on its geometrical parameters, including the characteristics of the enclosing elements and structures (walls, glazing, roof structure, foundation, etc.). A situational plan is prepared (orientation of the building in relation to the celestial directions, location in relation to the relief of the area and other buildings, etc.). The technical condition and characteristics of the technical equipment on the basis of which the installations for conversion, transmission and distribution of energy in the building are built are assessed. Specifics in the operation of the building are identified - work schedule and temperature regime of the premises.

Comfort

[Summer thermal comfort issues, Winter thermal comfort issues, Indoor air quality]

Energy

[Electrical Energy Consumption, Heating Fuel Consumption, Yearly Electricity cost, Yearly Heating cost, Water consumption, Energy Performance Certificate]

During the selection of the public building, it should take into consideration the higher the:

- Energy Consumption from electricity per m2 of the building
- Heating fuel consumption per m2 of the building the higher the environmental impacts and financial benefit would be for the building. In addition, these indicators will help identify the building with a high cost per user.
- Use of the building & number of Users/Staff

Public buildings that have the environment high on their educational agenda, are considered more likely to combine more easily activities and educational tools. These will be used for raising awareness on energy saving and climate change adaptation and mitigation, increasing the project impact and ensuring the longevity of the results. Active and sensitized staff are also very important for identifying suitable measures through the energy audits and for achieving a maximum impact of reducing energy consumption. The higher the number of staff the bigger impact the project will have. In addition, it is more beneficiary the building has also visitors (public) in order to give the best example of the energy consumption measures.

- Electromechanical System [installation of RES]
- Financial Support

Financial support by other means will aid in the development of the project.

National, regional and local documents

2. Joint Criteria for selection of the public building

General Description of the building (max.500 words)

The Public building selected to promote energy efficiency is the Administrative center of Thesprotia Regional Unit. It is about a 3-floor building with external walls of stone masonry, windows of PVC frames with double glazing and roof made by concrete slab and wood structural framing system covered with tiles.

<u>Heating system</u>: Two central Boilers, two-pipe system and conventional radiators. <u>Cooling system</u>: Split-type air conditioners. <u>Lighting</u>: LED tube lamps T8.

Name of the building: THESPROTIA REGIONAL UNIT MAIN BUILDING

Location (Country, City) / Climate Zone: Greece, Igoumenitsa/B

Type of building / Number of Users write description;

Office Building/One hundred and five

Cultural Value of the building from scale 1 (lowest) to 10 (highest) - write description:

It is about an emblematic Administration building, at the sea-front of the city, which services a lot of people and houses important departments of Thesprotia Regional Unit. Cultural Value: 8

Building Envelope /Construction:

- Building Area: 3411m²
- Year of Construction: *before 1955*
- Year of Renovation: *n*/*a*

- New Buildings (extensions and additions, if any): Second floor added (1980)
- Building Thermal Insulation Category based on the Directive 2002/91/EC on the energy performance of buildings (EPBD): Maximum values of the heat conductivity coefficient U (W/m2 oK)
- External walls: 2.33>0.50
- Windows-Doors: 3.00=3.00 and 4.10>3.00
- Flat-Sloping Roofs: 3.70>0.45
- Walls in contact with ground: 4.70>1.00
- Floors in contact with ground: 3.10>0.90

(Table 3.4 a-Greek Building Energy Performance Regulation)

- Type of glazing (single, double, with thermal insulation etc.): PVC frame- double glazing
- Type of thermal insulation on the roof: No
- Type of thermal insulation on the walls: No
- Anti- seismic upgrade (planning): No, stable ground
- Visible structural issues (write description): No
- Visual building issues: Inadequate electrical installation-Old central heating equipment
- Previous implementation of other Energy Efficiency measures: Installation of GSHP (openloop system) servicing the air conditioning of ground floor

Comfort

- Summer thermal comfort issues from scale 1 (smaller) to 10 (bigger): 6
- Winter thermal comfort issues from scale 1 to 10: 4
- Acoustic comfort issues from scale 1 to 10: 8
- Indoor air quality issues from scale 1 to 10: 6

Energy

- Electrical Energy Consumption(kWh/m2/yr.): 36.87 (Conditioned area: 3261 m²)
- Electrical Energy Consumption (KgCO2/m2/yr.): 0.036
- Type of Heating Fuel (Natural Gas, LPG, Diesel): Diesel oil
- Heating Fuel Consumption (Litter/m2): 2.48
- Yearly Electricity cost per square meter (€/m2/yr.): 6.396
- Yearly Heating cost per square meter (€/m2/yr.): 2.72
- Yearly Electricity cost per user (€/user/yr.): 20857 (2019)
- Yearly Heating cost per user (€/user/yr.): 8870.30 (2019)
- Yearly Water Consumption per user (Litter/user/yr.):1,288,000 litters

Use of the building and number of Users/Staff

- Use of the building (as per the Directive 2002/91/EC): Office Building
- o Number of staff:105
- Number of total users: 200

- Number of users per shift (for buildings with 24h operation): n/a
- Operation program (working hours): 07:00 to 16:00
- Environmental Education Activities: Yes, education of Technical and Environmental Department personnel
- o Active and sensitized staff: Yes

Potential Financial Support (write description): Proposal submission in a funding Program as a Public Building

Electromechanical systems:

 HVAC systems (indicatively A/C systems, ventilation systems, central heating, fan coils etc., along with their technical characteristics, e.g. type, functionality, efficiency, no of units, year of installation, recent inspections etc.)

Two (2) steel central heating Boilers. Nominal Thermal Power: 930kWth and 814 kWth, Combustion efficiency: 91%

- DHW systems (indicatively boiler, hot water systems etc., along with their technical characteristics, e.g. condition, type, year of installation, efficiency etc.): *Not Required*
- Lighting systems and equipment (e.g. number of LED lights, along with their technical characteristics, namely, power (W), luminous flux (lm) etc.)
 Lighting: 1020 LED tube lamps T8, Power 9-18-22 W, ~100Lm/W
- Other systems (e.g. BEMS, along with their characteristics if applicable): No
- RES systems integrated in building environment (along with their technical characteristics, e.g. type, capacity etc.)
 Ground Source Heat Pump (GSHP): Power:Cooling :62 kWc,EER=4.78, Heating:71
 kWth,COP=3.76
- Preventive and corrective maintenance contracts or procedures and inspection plans: Contracts concerning the maintenance of the Elevator and the Geothermal System

3. References

- Boilers' maintenance sheets
- GSHP Technical Data

4. Annex

ΣΥΝΔΕΣΜΟΣ ΕΓΚΑΤΑΣΤΑΤΩΝ ΚΛΥΣΗΣ ΗΠΕΙΡΟΥ & ΚΕΡΚΥΡΑΣ $\ll \Pi | \Phi \Lambda O \Gamma a \gg$

Αραβαντινού 5Ε - Τ.Κ. 45444 - Ιωάννινα

ΔΠΑΟΣ ΑΠΤ. ΧΕΡΣΤΟΦΟΡΟΣ ΥΠΛΟΣ (114, 1972) ΟΦΟΓΙΟΣ ΥΛΥΟΣΟΣ (1144 - ΑΝΑΤΟΜΙΩΣ) (0 ΙΥΝΤΗΡΗΣΕΙΙ ΚΑΥΣΤΗΡΩΝ - ΑΝΙΛΙΟΣ ΣΟΛΟΜΟΥ (2 - 46160 ΗΓΟΥΜΕΝΙΟΣ ΤΑ, ΟΙΑΘΙΙΣΖΈΡΟΙ - ΓΑΧ 20650242 - 1) AMM 121738477 AOY HEOYMENI ROY

ΦΥΛΛΟ ΕΛΕΓΧΟΥ EYNTHPHENE KAT PYOMIENE TON EFKATAETAERON ETAGERON RETION KAYENE TIA TUN ORFMANEH KTIPION KAI NEPOY

A. ETOIXEIA

- TYHOD ARBITA / KAJADKE VADJUD / ΠΑΛΑΙΟΤΗΤΑ ΧΟΛΙΟΛΛΑΣΣJ $\frac{1}{2}$ $\frac{1}{2}$ ELAOS & XFILTH OIKOAOMHE NI OBRITHENO DE CELAPETIAS 3. ONOMATERIONYMO YHEYOYNOY / THA
 Заприлания
 Селина

 4. Ономахники ізхударента
 330

 5. ПЕРІОХІІ ІЗХУОД КАУДТНРАЗЗА/211
 1385 (kW)
 1. IMEPOMIENTA TEABYTAIQY EAEPXOY ANAAYTH KAYYAEPHON ST (29.1.2730) <u>и, кргахиет</u> FIACE EPIAEIAE AIA KAMAFIXMONAEBHTA 2. KAOAPIEMUE KAIINOAOXOY

 - 3 ΚΑΘΑΡΙΣΜΟΣ Ή ΑΝΤΙΚ ΑΤΑΧΙζΑΣΗ ΜΠΕΚ.
 - 4. KAGAPIEMOE PYGMIEH KAETPUAKIN IONIEMOY EHINGHPA
 - 5. PYOMIZH ANAAOTIAE AEPA KAYEMOV
 - EAEFXOL MAPPOON KAYZIMOY EYEKEYHE
 - 7. EAELXON ALAPPOON KAYNAEPIOY
 - 8. AOKIMU AEITOYPITAE EYETIRMATOE AND/NEYEHE AEP(OY (av undøren)
 - 9. JOKIMH AEITOYPTIAT AZØAAIZTIKON EYETUMATON AEBHTA KAYETHPA
 - 10. ΕΛΕΓΧΟΣ ΣΤΕΓΑΝΟΤΗΤΑΤ ΘΑΛΒΙΔΩΝ (ΓΙΑ ΑΕΡΙΑ ΧΑΥΣΙΜΑ)
 - 11. METPUEH KAYEAEPIOY
 - 12. ΑΛΛΈΣ ΕΡΙΆΣΙΕΣ (ΝΑ ΑΝΑΓΡΑΦΟΝΊΑΙ ΣΤΙΣ ΠΑΡΑΤΗΡΗΣΕΙΣ)
- * OF EPFASIES HOY ETINAN STREETONONTAL ME "X"

L METPHEEJE

- L GEPMOKRAZIA KAYZAHPHOY 2. ӨНРМОКРАЛІА ХОРОУ АЕВЯТИЛІЮУ , $\mathbb{Z} \lesssim \mathbb{A}_{n}$ «С
- 3. ΜΟΝΟΞΕΙΔΙΟ ΤΟΥ ΑΝΟΡΑΚΑ
 1. μρι:

 4. ΟΖΕΙΔΙΑ ΤΟΥ ΑΖΩΤΟΥ
 5.9

 5. ΟΞΥΤΟΝΟ
 4. (κ.α.)

- 6. AIOEDAID TOY ANOPAKA
- 7. ΔΕΙΚΤΗΣ ΑΙΘΑΛΗΣ (BACHARACH)Ω......

Δ. ΥΠ<u>ΟΛΟΓΙΣΜΟΙ</u>

E. HAPATHPHERIE**

CONSERVED THEY OF THEY OF THE AND	THOMSEL MODIE
LEADSTRAND LAND MET MILLEN THE LANDALPIS	
TO UEK & 2654	

** ZUTEPETINZH UPOBAUMATION'H AZYNAMIAE PYOM SUE THE ECRATAZITATUS ATA TRODATIOMENA AUD TH NOMOBELIA OPIA NA AMAGECONTAL ALTITOMENTS OF AFTIES XAUNA INVESTIGATION AT AVELS

ET. ETOIXEIA EYNTHPHTH

- 1. ONOMATRIONYMO XAUNOGORES AGOS
- 2. ALEYOYNER / THA A. SONG ADY AD / LONG AV / 1977 з.
- APIGMOE AAFIAN AFKHEID BIJAFTEAMATOE 617205
- A D Y. INAPPENERTITMATIST. HIS ARGENER ∠
- 5. HMPPOMENIA EYNTIPHEITE $\mathcal{U}(lS/2$
- 6. O YNTHPHTHT (YHOFPAOH) -
- 7. O YREYSYNOL ROYYRRITOLTALLOY (ALAXERTETHE, BYPORY K.T.A.)

15. APIG: SYXNOTHTAE TOY INVERTER.

ų,

÷.

 $|\mathbf{x}|$

 \mathcal{A}_{i}

ž

-

×

ж.

Οι μετρήσεις δείγνουν ότι είνας

ENVOE 🖂 EKTOY

των προβιαπόμενων ορίων

Existence in a result of the second s

ΣΥΝΛΈΣΜΟΣ ΕΓΚΑΤΑΣΤΑΤΩΝ KAYEHE

ΗΠΙΙΡΟΥ & ΚΕΡΚΥΡΑΣ

««А ФЛОГА»

Αρυβοντινού 5Ε - Τ.Κ. 45444 - Ιωάννινο

ΑΠΛΟΖΑΓΙ ΧΡΙΣΙΟΦΟ: ΥΔΡΟΘΕΡΜΟΕΜΠΟΡΙΣ ΗΥΡΟΣΕΙΣΤΙΚΑ - ΑΝΑΓΟΜΙ... ΣΙΝΟΡΕΣΙΙΣΧΑΥΣΤΗΡΩΝ - ΑΚΟ 4. 2046 WOY 12 - 46100 HEDY/LAND 578. 0665422603 - FAX 206592424 ADM 121/18477 AOY HEOYMENITLE.

ΦΥΛΛΟ ΈΛΕΓΧΟΥ EYNTHPHERY KAI PYOMIERE TON KEKATAETAERON FTAGEPON EETION KAVEHE 11A THN ØEPMANEH KURBEN KAI NEBOY

<u>A. ETOIXEIA</u>

- OADE / APIOMOE / EYNOIKIA ZIAOS & XPHERIOIKONOMHE ALEXANDRELS D. F. CESCP97135 2 3 ONOMATI TI ON YOU YTE YRYNOY / TILA **ö**. ONOMATIGNANTING THE OTHER OF TH 9.
 - TYHOZ AEBITTA / KATAEKEYAETRE / HAAAIOTIITA XANGUNO2, f 10 a h 5, f 12
 - 7. TYHOS KAY STUDA / KATARKEYASTES /
 - HANAJOTRTA R.S. I.R. 100 HAPOXH MIEX 649 (2) 4 3.50 (39 JOPH HAOX KAYZIMOY D.C.T.R.S. 064 2

 - ΙΟ. ΕΤΗΣΙΑ ΚΑΤΑΝΑΛΩΣΗ ΚΑΥΣΙΜΟΥ

X

8

>

B. FPTAGLEE A/A

EIAOZ EPIAZIAZ

- ΚΑΘΑΡΙΣΜΟΣ ΛΕΒΗΤΑ
- 2. XAGAPEEMOE KAJINOLOXOY
- 3. KASAPISMOE'E ANTIKATASTASH MILEK
- 4. XAGAPIZMOZ PYOMIZH HARTPOAKON IONIZMOY LIHNOHPA
- 5. ΡΥΘΜΙΣΗ ΑΝΑΛΟΓΤΑΣ ΑΈΡΑ ΚΑΥΣΙΜΟΥ
- 6- EAEFXOZ AJAPPOLIN KAYEIMOY EYEKEYHE
- 7. KABEXOZ ALAPPOON KAYZAZPIOY
- ΛΟΚΙΜΗ ΛΕΙΤΟΥΡΓΙΑΣ ΣΥΣΤΗΜΑΤΟΣ ΑΝΙΧΝΕΥΣΉΣ ΑΕΡΙΟΥ (αν υκάρχει)
- 9. AOKIMU ABITOYPTIAE AEDAALETIKON EYETEMATON ABHRTA KAYETHPA
- 10. ΒΛΕΓΧΟΣ ΣΙΝΓΑΝΟΤΗΓΑΣ ΒΑΛΒΙΔΩΝ (ΓΙΑ ΛΕΡΙΑ ΚΑΥΣΙΜΑ)
- U. METPHEN KAYEA EPICY
- 12. AAAEE EPIAEIEE (NA ANAFPAQONTAI SHIE DAPATHPENEIE)
- OF EPDA22EE TOOY EFINAN EDMELONON TALME *K*

I. MUTPHERIE

Δ. <u>ΥΠΟΔΟΓΙΣΜΟΙ</u>

- 31.0 % 1. SETTEPEKOE BAOMOLIATIOADENE $\frac{37.2}{5}$ % 2. ALIGAETEE KAYEAEPIOY $\frac{5}{5}$ % 3. JAPOXH KAYEIMOY $\frac{52.2}{5}$ kg/s 1 g/st 4. Ourmer of the aebitta $\frac{25}{5}$ %

E. IIAPATHPHIED:**

The Andrew Others (A. 2019) and Andrew Printer and Andre
1.2 主角 シア つよ - ア 1.2 と (1.3 と) (1.5 と)
= 1211225A5.00.25.7 + 12502 + 2617475 + 202 + 202 + 74666 + 7 + 562660 + 7 + 12502 + 202
, ME 3ND (DE) R. MASAK
n a succession in the state of

** 2E TE PILL ON A LEOBATHMATOLY HI ADYNAMIAE PYSNELEY. THE SUMALALIANES ATA TROBARDOMENAALIO TH NOMOREYIA. OPIA NA AMAGEPONTATARITOMENIE OFATTELS ALMA TECHENUMTATAVILET

ET. ETOLXELA LYNTHPHTH

- ONOMATELIONYMO XOISZONOOS AROSX L.
- 2. AITYOYNEH/THA Q. TODOWNOV 12/ 6972011274
- 4 A O M UNAPERN PER TRANSFORMATION AND MADE AND A STATE
- 5. AMEROMINIA EYNTHEREHE $\mathcal{Z}(1.12/2034)$
- Ο ΣΥΝΤΗΡΗΤΗΣ (ΥΠΟ) ΡΑΦΗ)
- O YIEYOYNOY TOY AEBRITOZIANION. (ALAXEIPIETHE - REBOINDER A AD- - - -

дары калалынатан арырар 10. IIIEDII HPEMIAD AEPIOY 12. THEZH MILLER AEPIOY common contracting contraction index 15. APIØ, EYXNOTHTAE TOY INVERTER

Οι κετρήφεις δείχνουν ότι γίνει:

ENTON CAN EKTOE [

νων πρισβλεπόμενων ορίων

No

B COOL MANUFACTURERS OF AIR-CONDITIONING EQUIPMENT LTD

GEO Series

GEOTHERMAL HEAT PUMPS COOLING / HEATING APPLICATIONS INDCOR / OUTDOOR INSTALLATION

You.3402 01.005

COOLING CAPACITY 7,65 kW - 100,4 kW (R410a)

HEATING CAPACITY 9,0 kW - 113,0 kW (R410a)

The BCOOL GEO series includes packaged water cooled heat pumps for geothermal applications and indoor / outdoor installation. They are available in several types and models, with nominal capacities ranging from 7,65 to 100,4 kW in cooling and 9 to 113 kW in heating.

The BCOOL GEO series is ideal, in combination with underfloor cooling / heating systems or water terminal units / air-handling units, for air-conditioning of residences, school complexes, officebuildings, hotels, hospitals, etc., or for supplying cold or hot water in industrial applications.

Optimized design for R410a refrigerant.

- Casing: Galvanized Steel plate with polyesteric coating. Assembly: Fully bolted / welding free.
 - Compressor: Hermetically sealed scroll type.
 - Water heat exchanger (source): Brazed, plate type.
 - Water heat exchanger (load): Brazed, plate type.
 - Electronic expansion valve, ensuring constant suction gas
 - superheat at all operating conditions.
 - Safety and functional devices:
 - High / low pressure switch.
 - Phase sequence phase failure reverse phase and voltage monitoring device.
 - Evaporator low temperature protection.
- Electronic microprocessor control with digital display.

Options:

- Differential water pressure switch.
- High and low pressure manometers.
- Desuperheater for sanitary hot water up to 80°C.
- Hydraulic module with pumps and all necessary devices. Bus module interface kit for Modbus connection.
- Remote Keyboard.
- Various optional capabilities.

Nomenclature

G E O - X X X - X

1 2 3

- 1 GEO Geothermal Heat Pump
- 2 Capacity (kW)
- 3 Refrigerant Liquid R410a

Contents

1.0 TECHNICAL DESCRIPTION

2.0 GEO R410a

- 2.1 Specifications GEO R410a 50 Hz
- 2.2 Cooling capacity table R410a
- 2.3 Heating capacity table R410a
- 3.0 OUTLOOK DRAWINGS

4.0 WIRING DIAGRAM

Generally

The BCOOL GEO series, including geothermal heat pumps, consists of 11 basic models covering capacities from 7,65 up to 100,4 kW in cooling and 9 up to 113 kW in beating.

It is the end result of a thorough study and accurate design by experienced BCOOL research and development teams, to develop a small / mid size geothermal heat pump series with compact shape, high performance and reliability of the highest quality standards.

This series meets the highest levels of aesthetic and technical requirements, using the latest technological innovations, including environmentally friendly R410a refrigerant, that is chlorine-free and has zero ozone depletion potential. GEO units are therefore ideal for installation in residential, commercial and industrial applications, due to their robust construction, high-efficiency performance, reliability, selected materials and low operating sound levels.

Casing

All units use metal parts that are fabricated from heavy gauge galvanized steel sheets, formed to ensure maximum rigidity that guarantees and preserves the unit's operation during the years. After fabrication these are degreased, phosphatised and electrostatically powder coated with an epoxy-polyester RAL 9002 coating of a thickness of 60-70 µm.

This fully automatic process ensures superior corrosion resistance against the most aggressive ambient conditions. This treatment can successfully withstand a salt spray test of 500 hours, according to ASTM B-117.

All components are assembled together using bolts, thus avoiding the need for welding which may harm the galvanization of the steel and ensuring that the whole assembly can fully withstand adverse weather conditions.

The compact footprint of the unit arises from detailed study and design by our engineering teams and results in a machine which fits easily in restricted areas, is simple and easy to install and maintain and has been designed with special fittings for easy transportation and lifting.

Removable side panels with special locks are used to permit access only to authorized personnel to internal components of the unit, for inspection and maintenance. Electrical and electronic equipment and components for proper unit's operation are located inside a weather proof (IP 55) electrical panel, with access via special key.

Compressors

All units use low-noise, maintenance free, Hermetic Scroll compressors with low vibration levels, especially optimized for use with R410a refrigerant, provided from world class suppliers. They are equipped with a crankcase electrical heater for oil and are internally protected against potential overloading or electrical spikes.

The compressors are mounted on special anti-vibration rubber mounts, to absorb and eliminate any vibrations from the unit's operation.

Water heat exchanger (source)

All units are equipped with a water Plate Heat Exchanger (source), selected from world class manufacturers. It is made of stainless steel plates (AISI 3161.4401), especially formed to achieve a large heat transfer surface and assembled by means of an automatic brazing process, under vacuum.

There are probes for water temperature sensors and the whole heat exchanger is wrapped in a heavy insulation material.

Water heat exchanger (load)

All units are equipped with a water Plate Heat Exchanger (load), selected from world class manufacturers.

It is made of stainless steel plates [AISI 3161.4401], especially formed to achieve a large heat transfer surface and assembled by means of an automatic brazing process, under vacuum.

There are probes for water temperature sensors and the whole heat exchanger is wrapped in a heavy insulation material.

Refrigerant circuit

All units have one refrigerant circuit. Upon request, models GEO 060 -GEO 100 could have two refrigerant circuits.

The refrigerant circuit has, as expansion device, an electronic expansion valve.

Other components fitted are: suction accumulator, liquid receiver, 4-way reversing valve, check valve, sight glass, large capacity filter dryer and high/low pressure manometers (optional).

Unit protection is provided by a high/low pressure switch with auto reset.

Microprocessor controller

All units are equipped with a sophisticated controller that combines intelligence with operating simplicity. The controller constantly monitors all machine parameters and precisely manages among others:

Automatic compressor controll'unction through return water temperature. Frost protection.

Hydraulic circuit spump control.

Compressorstart-uptimedelayfunction,

Compressorrunningtime records.

Over 150 programmable parameters.

Auto diagnostic stop function due to low water circulation, high/low operating pressure and compressor thermal overload.

Auto diagnostic stop function and digital display of approximately 30 possible errorcodes, including thermistor faults.

Digital displays of inlet/outlet source and load water.

Remotecool/heatselectorswitch.

Remoteon/offswitch.

Phasesis; phase failure - reverse phase and voltage monitoring.

Many optional control capabilities (listed in optional accessories).

Other unit accessories / options

R407C or R134a refrigerant liquid. Models for high water temperature up to 70°C. Glycol application for chilled water low temperature down to -5°C. Compressors with inverter motor drive. High and low pressure manometers. Differential water pressure switch. Pressure relief valve on compressor discharge. Hydraulic module with pumps and all necessary devices. A-meter, V-meter. Water beat exchanger anti-freezing electrical heater. Compressor noise reduction jacket. Control for two pumps (one stand by). Desuperheater for sanitary hot water up to 80°C.

Optional accessories

Microprocessor controller options:

Remote keyboard.

BMS module interface kit for Modbus connection. Parallel chiller operation with optional controller. Microprocessor parameter reprogramming card.

MODEL.	50 Hz	GEO 008	GED 010	GEO 015	GEO 020	GE0 030	GEO 040	680.050	GEO 060	GEO 080	GEO 090	GEO 100	
Nominal Cooling	kW	7,65	10,55	15,2	20,6	30,9	39,1	45,9	61,8	78,2	91,8	100,4	
	ET	2,2	3,0	4,1	1.9	8.8	. 1t.i	tif	17.6	12,2	26,1	28.5	
	Bts/h	36.031	35.966	51,818	70.227	105.682	132.295	155,477	211,364	266 591	112.955	142,273	
Nominal Heating capacity ²	kW	9,0	12,2	17.8	24,0	35,4	44,9	52,9	70,9	69,7	105,8	113,0	
Construction	Minind/Gdor	-	Galvantzed steel / Light grey-beige (RAL 9002)										
Compressiar			\$DROUL										
Quantity			t 2 (1 TANDEM)										
Capacity steps	1			2. 23	D+200%					8 - 50	- 300754	01	
Assorbed power	14W	1,6	2.1	31	4.1	5,8	7,5	9,04	11.6	15,0	14,0	19,4	
Norminal operating current	Α.	3,36	1,79	5,95	8,7	12.5	14,9	19,39	24,0	29,8	34,8	-90,8	
Nacional sporting correct	A	6,5	1,0	11,8	15,0	72.0	81,0	34,0	44,0	62,0	68,0	61,1	
Water heat exchanger (source)	23		Brazed, plate type										
Quantity							1		1.1.1.1	_		_	
Nus.operating pressure	Watar stde Bar		25										
	Nofrigment side Dar		45										
Connections		11/4*	11/4"	11/4*	11/4*	1.1/4*	1.1/42	15/47	8	2-	2"	r	
Nominal water flow	Lt/h	1.580	2.150	8.130	4.200	\$.290	7.960	9,390	12.580	15,920	18,780	20.539	
Water heat exchanger (load)							Bruned, joint	type					
Quantity							.1						
Max. operating pressure	Water side 3 av	-	18										
	Refrigerant side Bar						45						
Consections		11/47	11/4*	11/4	11/1	11/42	1.1/4*	1.1/41	20	2*	¥	r	
Komisal sutter flow	Litt/h	1.550	2,090	3,060	4.130	6.120	7.760	9.150	12.230	15.400	18,290	19.461	
Bedrical characteristics	1	-				Electric (network 400 '	y/316/50	Hz				
Total absorbed power	kW	1,0	2,1	3,1	5,1	s,a	7,5	9,0	11,6	15,0	18,0	20,0	
Nominal operating number	A	3,6	1, D	5,0	8,7	12,5	149	19,4	24,0	29,8	38,9	40,0	
Compressor cortor resistance power	w	90	90	90	9D	99	98	180	180	110	160	189	
Voltage opending limits	V.						360 - 44	10	1			YII.	
kofnigeraat circuit													
Mamber of dirusta							1						
Expansion device			_	_	_	13e	ctranic expan	ution value					
Relingerant type	1 Allerton	1 dini	70.00	1 and	P. Contraction	1 100.00	84104		1	T. Sale	1	1	
Dimensions	Widthmas	604	604	604	604	604	604	614	850	1150	1850	liso	
	Length IIII	694	604	60.5	604	601	604	424	1.600	1.660	1.668	1.660	
	fleight eam	1.179	1.079	1.071	1.079	1.079	1.879	1.079	985	985	985	985	

NOTES

Nominal conditions are as following: 1 Source water temperature inlet 20%C, Entering / leaving chilled water temperature 12 / 7%C (cooling). 2 Source water temperature inlet 15%C, fintering / leaving heated water temperature 40 / 45%C (beating).

Electrical installation specifications are purely indicative and non-binding. All connections to the system and the electrical installation must be in full accordance with the applicable national and local codes.

Source	water reinlet *C	10	1	15	5	20	E.	.25	6	31	Q.	32	1
MODEL	Water outlet	Cooling capacity KW	0.E.B.	Cooling capacity icW	K.B.K	Cooling capacity kW	E.E.R.	Cooling capacity kW	E.E.B.	Cooling capacity kW	E.E.R.	Cooling capacity kW	E.E.R.
1	16,0	8,874	6,692	8,706	6,238	8,239	5,186	7,734	4,299	7,206	3,509	6,648	2,949
GEO 008	7.0	8,254	6,157	8,086	5,736	7,650	4,780	7,176	3,939	6,678	3,227	6,150	2,619
10000000	5,0	7.650	5,659	7,520	5,268	7,099	4,388	6,648	3,618	6,166	2,959	5.653	2,400
GEO 010	10,0	12,238	7,032	12,006	6,555	11,362	5,450	10,666	4,506	9,938	3,687	9,168	2,99
	7,0	11,383	6,470	11,151	6,028	10,550	5,023	9,896	4,139	9,210	3,391	8,481	2,75
	5,0	10,550	5,937	10,371	5,535	9,790	4,611	9,168	3,802	8,503	3,109	7,796	2,52
	10,0	17,632	6,854	17,298	6,398	16,370	5,320	15,367	4,398	14,318	1,599	13,209	2,92
GEO 015	7,0	16,401	6,315	16,066	5,884	15,200	4,903	14,258	4,040	13,270	3,310	12,219	2,68
19792	5,0	15,200	5,795	14,942	5,403	14,106	4,501	13,209	3,712	12,251	3,035	11,233	2,46
	10,0	23,896	7,070	23,443	6,590	22,196	5,479	20,827	4,530	19,405	3,707	17,901	3,01
GED 020	7.0	22,227	6.504	21,774	6,060	20,600	5,050	19,323	4,161	17,984	3,409	16,560	2,26
	5,0	20,600	5,969	20,250	5,565	19,117	4,635	17,901	3,823	16,604	3,126	15,223	2,53
	5,0	35,861	7.392	35,181	6,890	33,295	5,729	31,255	4,736	29,122	3,876	26,865	3,14
GED 030	7,0	33,357	6,801	32,677	6,336	30,915	5,280	28,998	4,351	26,989	3,564	24,853	2,89
	10,0	30,915	6,241	30,389	5,819	28,689	4,847	26,865	3,997	24,917	3,268	22,846	2,65
	10,0	45,356	7,070	64,496	6,590	42,111	5,479	39,530	4,530	36,632	3,707	33,978	3,01
GED 040	7,0	42,189	6,504	41,329	6,060	39,100	5,050	36,676	4,161	34,134	3,409	31,432	2,76
101010404	5,0	39,100	5,969	38,435	5,565	36,285	4,636	33,978	3,823	31,515	3,126	28,895	2,53
	10,0	53.244	7,000	52,234	6,525	49,434	5,425	46,405	4,485	43,238	3,670	39,887	2,96
GEO 050	7,0	49,526	6,440	48,516	6,000	45,900	5,000	43,054	4,120	40,071	3,375	36,899	2,74
	5,0	45,900	5,910	45,120	5,510	42,595	4,590	39,887	3,785	36,995	3,095	33,920	2,51
	10,0	71,723	6,692	70,363	6,239	66,591	5,186	62,510	6,288	58,244	3,509	53,730	2.84
GEO 060	7,0	66,715	6,157	65,354	5,736	61,830	4,780	57,997	3,939	53,978	3,227	49,705	2,61
353.00	5,0	61,830	5,650	60,779	5,268	57,378	4,388	53,730	3,618	49,835	2,959	45,692	2,40
	10.0	90,712	6.692	88,992	6,238	84,221	5,186	79,060	4,288	73,664	3,509	67,956	2,B4
GEO 888	7,0	84,378	6.157	82,657	5,736	78,200	4,780	73,352	3,939	68,269	3,227	62,865	2,61
	5,0	78,200	5,650	76,871	5,268	72,570	4,399	67,956	3,618	63,029	2,959	57,790	2,40
	10.0	106,498	6.692	104,468	6,238	98,869	5,186	92,810	4,288	86,476	3,509	79,774	2,8
GED 090	7,0	99,052	6,157	97,033	5,736	91,800	4,780	86,108	3,939	90,141	3,227	73,798	2,6
	5,0	91,800	5,650	90,239	5,268	85,190	4,388	79,774	3,618	73,991	2,959	67,840	2,40
	10,0	116,464	7,392	114,255	6,890	108,131	5,729	101,504	4,736	94,577	3,876	87,248	3,1
GEO 100.	7,0	108,332	6,801	106,123	6.336	100,400	5,280	94,175	4,351	87,649	3,564	80,712	2,89
	5.0	100,400	6,241	98,693	5.819	93,171	4,847	87,248	3,997	80,922	3,268	74,196	2,65

->

ε.,

NOTES • Bold values show nominal cooling capacities. • Above figures are valid for water dt=5%.

7

Source	Source water		0		4		r l	10)	15	£	20	15
MODEL	Water outlet	Heating capacity kW	C.0.R	Heating capacity kW	C.O.R	Heating capacity XW	C.O.P.	Heating capacity kW	6.0.P.	Heating capacity kW	COP	Heating capacity kW	c.o.
	35,0	6,570	3,800	7,398	4,248	7,838	4,499	8,291	4,640	9,310	6,898	11,498	5,81
GEO 008	45,0	6,373	2,839	7,056	3,268	7,654	3,458	8,101	3,659	9,001	3,762	10,348	4,25
	50,0	6,110	2,679	6,695	2,740	7,391	2,899	7,618	2,979	8,699	3,139	9,967	3,65
GEO 010	35,0	8,890	3,600	9,099	4,248	10,394	4,499	11,207	4,640	12,583	4,898	15,540	5,83
	45,0	8,614	2,839	9,537	3,268	10,345	3,458	10,949	3,659	12,166	3,762	13,986	4,2
Witten .	50,0	8,258	2,679	9,049	2,740	9,990	2,899	10,296	2,979	11,757	3,139	13,471	3,63
	35,0	12,970	3,800	14,604	4,248	15,473	4,499	16,368	4,640	18,378	4,898	22,698	5,83
GEO 015	45,0	12,581	2,839	13,930	3,268	15,110	3,459	15,992	3,659	17,769	3,762	20,428	4,28
	50,0	12,062	2,679	13,216	2,740	14,591	2,899	15,039	2,979	17,172	3,139	19,675	3,63
	35,0	17,500	3,810	19,705	4,260	20,878	4,511	22,085	4.652	24,798	4,911	30,625	5,83
GEO 020	45,0	16,975	2,846	18,795	3,277	20,388	3,467	21,579	3,669	23,975	3,77Z	27,563	4,2
	50,0	16,275	2,686	17,833	2,747	19,688	2,907	20,291	2,987	23,170	3,147	26,548	3.6
	35,0	25,860	3,800	29,118	4,248	30,851	4,499	32,635	4,640	36,644	4,990	45,255	5,8
GEO 030	45,0	25,094	2,839	27,774	3,268	30,127	3,458	31,885	3,659	35,428	3,762	40,730	4,2
	50.0	24,050	2,679	26,351	2,740	29,093	2,899	29,985	2.979	34,239	3,139	39,230	3,64
	35,0	32,760	3,810	36,889	4,260	39,063	4,511	41,343	4,65 Z	46,421	4,911	57,330	5,8
GE0 040	45,0	31,777	2,846	35,184	3,277	38,165	3,467	40,393	3,669	44,881	3,772	51,597	4,2
	50,0	30,467	2,686	33,382	2,747	36,855	2,907	37,985	2,987	43,374	3,147	49,697	3,6
	35,0	38,610	3,795	43,475	4,243	46,062	4,493	48,725	4,634	54,710	4,892	67,568	5,8
GEO 050	45,0	37,452	2,835	41,467	3,264	44,981	3,453	47,606	3,655	52,896	3,757	60,811	4,2
2010	50,0	35,907	2,675	39,344	2,736	43,436	2,896	44,768	2,975	51,120	3,135	58,571	3,6
	35,0	51,720	3,800	58,237	4,248	61,702	4,499	65,271	4,640	73,287	4,898	90,510	5,8
GED 060	45,0	50,168	2,839	55,547	3,268	60,254	3,458	63,771	3,659	70,856	3,762	81,459	4,2
40.000.000.000	50,0	48,100	2,679	52,703	2,740	58,185	2,899	59,969	2,979	68,477	3,139	78,459	3,6
	35,0	65,470	3,800	73,719	4,248	78,106	4,499	82,623	4,640	92,771	4,898	114,573	5,8
GEO 080	45,0	63,506	2,839	70,315	3,268	76,273	3,458	80,725	3,659	89,694	3,762	103,115	4,2
	50,0	60,887	2,679	66,714	2,740	73,654	2,899	75,912	2,979	86,682	3,139	99,318	3,6
	35,0	77,230	3,800	86,961	4,248	92,135	4,499	97,464	4,640	109,435	4,898	135,153	5,8
GEO 090	45,0	74,913	2,839	82,945	3,268	89,973	3,458	95,225	3,659	105,805	3,762	121,637	4,2
112402469	50,0	71,824	2,679	78,697	2,740	86,884	2,899	89,548	2,979	102,253	3,139	117,158	3,6
	35,0	82,490	3,740	92,872	4,181	98,399	4,428	104,090	4,567	116,874	4,821	144,340	5,7
GEO 100	45,0	80,006	2,794	88,584	3,216	96,089	3,403	101,698	3,602	112,998	3,703	129,906	4,2
and a second	50.0	76,706	2,637	84,047	2,697	92,790	2,854	95,636	2,932	109,204	3,089	125,122	3,5

NOTES • Bold values show nominal locating capacities. • Above figures are valid for water dt=5°C.

B COOL MANUFACTURERS OF AIR-CONDITIONING EQUIPMENT LTD

Omirou & Andromachis str., Mandra, Attica, Zip: 19600, Greece Phone: +302110124898-9 Fax: +302112159181

Office of North Greece: 27, M. Alexandrou str., Pylaia, Thessaloniki, Zip: 55535 Phone: +30 2316 007072 Fax: +30 2316 007073

Web: www.bcool.com.gr E-mail: info@bcool.com.gr

